首页文章正文

已知△abc内接于圆oABAC,数轴上有6个点而且ABBC

A与b的差除以它们的和 2022-12-13 00:50 811 墨鱼
A与b的差除以它们的和

已知△abc内接于圆oABAC,数轴上有6个点而且ABBC

(1)∵∠BPC=60°,∴∠BAC=60°,∵AB=AC,∴△ABC为等边三角形,∴∠ACB=∠ABC=60°,∴∠APC=∠ABC=60°,而点P是AB‍ 的中点,∴∠ACP=12‍ ∠ACB=30°,∴∠PAC=90°,∴tan∠PCA=连接AD,OD ∵AB是直径∴∠ADB=∠ADC=90° 即AD⊥BC ∵AB=AC,即△ABC是等腰三角形∴AD是∠BAC的平分线(三线合一)∴∠BAD=∠CAD 即∠OAD=∠ODA=∠CA

17. 如图,△ABC内接于⊙O,弦AC交直径BD于点E,AGBD于点G,延长AG交BC于点F. 求证:AB2=BFBC. 18. 已知二次函数y=ax2-x+ 的图象经过点(-3, 1). (1)求a 的值;(2)【题目】如图,已知圆O是△ABC的外接圆,AB=BC,AD是BC边上的高,AE 是圆O的直径,过点C作圆O的切线交BA的延长线于点F. (1)求证:ACBC=ADAE;(2)若AF=2,CF=2 ,求AE的长.试题答案【

+ω+ 切圆O与各边分别切于EFGH在EF与GH上分别作⊙O的切线交AB于M交BC于N交CD于P交DA于Q求证MQ∥NP4ABCD是圆内接四边形其对角线交于PMN分别是ADBC的中点过MN分别作B证明:连接OB,OC,BD,CD ∵AB、AC是⊙O的切线∴AB=AC(从圆外一点引圆的两条切线长相等)又∵OB=OC,OA=OA ∴△ABO≌△ACO(SSS)∴∠BAO=∠CAO 即AO平分∠BAC

3. (2020·定海模拟) 如图,⊙O的半径为6,点A、B、C为⊙O上三点,BA平分∠OBC,过点A作AD⊥BC交BC延长线于点D, (1) 求证:AD是⊙O的切线(2) 当sin∠OBC= 时,求BC的长(3) 连【题目】在△ABC中,已知ABAC ,O,I分别是△ABC的外心、内心,且满足AB-AC=2OI.证明:OI∥BC 相关知识点:解析【解析】如图11-24所示,作OM⊥BC 于点M, 1N⊥BC 于点N记BC=a,AC

╯0╰ 圆O中,弧AB=2CD,那么弦AB和弦CD的关系是()A、AB=2CDB、AB>2CDC、AB<2CD D、AB与CD不可能相等39、在等边三角形ABC外有一点D,满足AD=AC,则∠BDC的度数为()A、300(1)∵OC=OB ∴∠OCB=∠CBA=∠CAE ∴⊿ACE∽⊿CDE ∴CD⊥AE (2) AC²=AD*AE(射影定理)∵∠CBA=∠CAE ∴Rt⊿ACE

后台-插件-广告管理-内容页尾部广告(手机)

标签: 数轴上有6个点而且ABBC

发表评论

评论列表

蓝灯加速器 Copyright @ 2011-2022 All Rights Reserved. 版权所有 备案号:京ICP1234567-2号